ALKYL INDUCTIVE EFFECTS ON MOLECULAR IONIZATION POTENTIALS-XV

n-ALKANES

H. F. WIDING and L. S. LEVITT*

Chemistry Department, College of Science, University of Texas at El Paso, El Paso, Texas

(Received in the USA 17 April 1973; Received in the UK forpublication 20 August 1973)

Abstract-The first ionisation potentials, E,. of n-alkanes are found to be a linear function of the inductive substituent constants, $\Sigma \sigma_1$. The correlation is obtained by considering that a σ -bonding electron is ejected from the most central $C-C$ bond in the alkane $R-R'$. The equation for the regression is $E_1 = 17.19 + 60.2 \Sigma \sigma_1 \pm 0.04 \text{ eV}$, with correlation coefficient 0.998. An equation is also deduced relating E_i to the number of carbon atoms, n_c, and hydrogen atoms, n_H, in the n-alkane: $E_i = 4.70(n_H - 1)/n_c$, from which E_i for polymethylene, $(CH_2)_k$, is found to be 9.40 eV.

In this paper it will be demonstrated that the adiabatic ionization energies, E,, of n-alkanes are linear functions of Taft's inductive substituent constants, $\sigma_{\rm L}$.

It has already been shown that the ionization potentials of alkyl free radicals,² R \cdot , are linear in σ^* ,³ and that the E_i 's of alcohols," ethers," thiols," thioethers,⁴⁴ alkyl halides,⁴⁶ ketones,^{4f} carboxylic acids,'" copper acetylacetonates,'h amines." esters,⁵ nitriles,⁶ nitroalkanes,⁶ disulfides,⁷ alkenes,⁸ and alkynes,⁹ are all linear with respect to both σ_1 and σ^* . Thus one is able to compute, with a high degree of precision, the ionization potentials of compounds which yield a low abundance of the primary cation radical, or are difficult to obtain in a pure state, or vaporize only with decomposition.

The first adiabatic ionization energy of alkanes corresponds to the ejection of an electron from the highest occupied MO,¹⁰ which is assumed, with the exception of methane, to be a σ bonding orbital mainly associated with C-C, rather than C-H, the $C-C$ bond being weaker than the $C-H$ bond (82) and 100 kcal/mol, respectively). In order to compute the proper $\Sigma \sigma_1$, we assume that the ejected electron is from that C-C bond which has the highest electron density, due to interelectron repulsion. Electron release by alkyl groups is in accordance with their usual inductive order (Me \leq Et \leq n-Pr. etc.) and is, of course, reflected in the σ_1 and σ^* constants. For a n-alkane this is tantamount to saying that the electron is lost from the most central C-C bond in the molecule. For n-butane, for example, $\Sigma \sigma_1$ will be calculated for two ethyls, not a methyl and n-propyl. Only in this way is the correlation obtained.

We can write, therefore, the following representation of the gas-phase expulsion of a σ -bonding electron from a C-C bond:

$$
R\bigodot R'\stackrel{E_1}{\longrightarrow} R\bigodot R'+e^-
$$

where R and R' cannot differ by more than one carbon (when n is odd in C_nH_{2n+2}).

Unlike the correlations given in previous papers in this series, 4° we are not able to include the simplest of the n-alkanes, methane, due to the absence of a C-C bond; and in this respect it is not surprising that the E_i value for CH₄ (13 eV) falls far from the regression line. Furthermore, in this series of compounds, there is no functional group in the accepted sense.

Table 1 lists the available experimentally" obtained photoionization (PI) potentials for the nalkanes, along with the corresponding $\Sigma \sigma_1$ values for the alkyl groups, computed as explained above.

The experimental E₁ values are plotted us $\Sigma \sigma$, in

Table I. Experimental and calculated E, values

C mpd	$\Sigma \sigma$."	E_i (eV) $(Expt')^*$	Calculated E_1 (eV)		
				$(Eq(2))$ $(Eq(5))$	(Eq(7))
C.H.	-0.092	11.65	$11 - 65$	$11 - 78$	11-75
C ₂ H _n	-0.101	$11 - 07$	$11 - 10$	10.98	10.97
C_4H_{10}	-0.110	$10 - 63$	10.56	10.59	10.58
C.H.,	-0.113	10.35	10.38	10.35	10.34
C _n H _n	-0.116	10.18	$10-20$	$10-19$	10.18
C ₂ H ₁₆	$-0.118c$	10-08	$10 - 08$	$10-08$	$10-07$
$C_{\rm s}H_{\rm rs}$	-0.120°	_•	9.95	9.99	9.98
C _o H ₂₀	—'	\overline{a}	⊸	9.93	9.92
C _n H ₂₂	_.	$^{\prime}$		9.88	9.87
(CH ₂)		- 4		$9-40$	$9-40$

'From Ref I.

"From Ref II.

'n-Bu value from Ref 4a.

dExperimental PI or PES value not available.

'The σ_1 for n-Am is not known.

Fig 1, where it is immediately evident that an excellent correlation exists ($r = 0.998$; standard error = 0.04 eV).

The equation for the regression line is given by

$$
E_{R-R} = E_0 + a_1 \Sigma \sigma_1. \tag{1}
$$

The intercept (E_0) and slope (a_1) are found to be 17.19 eV and 60.2 eV, respectively, and therefore we have:

$$
E_{R-R} = 17.19 + 60.2 \Sigma \sigma_1 \pm 0.04 \text{ eV}.
$$
 (2)

In the fourth column of the Table, the E_i values calculated using Eq (2). are presented, and the agreement with the experimental values is seen to be excellent. The E_i 's are also computed for noctane, n-nonane, and n-decane, compounds for which there are as yet no experimental PI, PES, or spectroscopic values available.

The slope, a_i , in eV units, is analogous to the dimensionless reaction constant ρ_1 , and is a measure of the sensitivity of the ionization site to alkyl inductive effects. The very large a_1 value of 60.2 obtained here for n-alkanes should be compared with the slopes observed for alkyl free radicals³ (15.2) ^{*}, alkenes⁸ (11.6), alkynes⁹ (23.2), ethers⁴⁶ (28.0), and ketones⁴ (14.0). For alkenes and alkynes a bonding

*Value obtained by our plot of E_t against σ_i (unpublished work).

 π -electron is lost. Comparing the n-alkanes with the ethers and ketones, it is seen that the a_i 's vary tremendously in the order $R_2CO \le R_2O \le R - R$, and this can be rationalized in the following way: in R,CO the ionization site is the oxygen lone pair and the alkyl inductive effect must be transmitted through the carbonyl carbon and the $C=O$ double bond; in R_2O the electron is lost again from an oxygen non-bonding lone pair, but the R groups are in close proximity; In R:R the alkyl groups are at the very site of ionization and thus are able to exert the strongest inductive effect.

It is seen from the experimental E_1 data in the Table that there is a regular but gradual attenuation of the diminishing effect of increased chain length on the ionization potentials. This is shown more clearly in Fig 2 where E_i is plotted against the number of C atoms, n. This curve is, apparently, a rectangular hyperbola, and can be represented¹² by Eq (3) :

$$
E_1 = E_{(min)} \left(\frac{n+b}{n} \right), \tag{3}
$$

where E_{rmm} is the theoretical E_1 value for a straight chain saturated hydrocarbon of infinite length, i.e., for polymethylene; and *b* is an empirical constant to be evaluated. In order to determine the numerical values of $E_{(mu)}$ and b, Eq (3) can be rearranged to give Eq (4)

$$
nE_i = nE_{(min)} + bE_{(min)} \qquad (4)
$$

which is the equation for a straight line (Fig 3) in a plot of nE_i us n, with intercept $bE_{(mu)}$ and slope $E_{(min)}$. The slope is found to be 9.40 eV and the intercept is 4.75 eV, from which b = int./slope =

Fig 3. A plot of nE_1 of C_nH_{2n+2} vs n.

 0.505 . Substituting these values into Eq (4) , we have

$$
nE_1 = 4.75 + 9.40 \text{ n} \pm 0.05 \text{ eV}. \tag{5}
$$

With good approximation, $b = \frac{1}{2}$, and therefore Eq. (3) can be rewritten as

$$
E_1 = 9.40 \left(\frac{n + \frac{1}{2}}{n} \right), \tag{6}
$$

which can be rearranged to give

$$
E_1 = 4.70 \left(\frac{2n+1}{n} \right) = 4.70 \left(\frac{n_H - 1}{n_C} \right)
$$

= 4.70(2) for 2n > 1, (7)

 $*E_1 = 9.06 + \frac{A}{n_c} - \frac{B}{n_c^2}.$

tCalculations_based on vertical electron impact El's which generally run 0.5 to 1.0 eV higher than those obtained by PI, PES, or spectroscopy.

where n and n_c = number of C atoms and n_H the number of H atoms in the alkane C_nH_{2n+2} (n \neq 1). This single parameter equation can be compared to the three parameter equation^{*} of Vilesov¹³ who has estimated $E_{(m,n)}$ (for $(\tilde{CH}_2)_k$) to be 9.06 eV, whereas Herndon,¹⁴ Hall,¹⁵ and Fukui, *et al.*,¹⁶ using various semi-empirical MO methods, have all estimated $E_{(mn)}$ at about 10.0.[†]

REFERENCES

- 'R. W. Taft and 1. C. Lewis, *Tetrahedron 5, 210* (1959) 'A. Streitwieser, *Prog. Phys. Org. Chem. 1,* 1 (1963)
- 'R. W. Taft in Steric *Effects in Organic Chemistry (M. S.* Newman, Ed.), Wiley, N. Y. 1956. p. 619
- 'B. W. Levitt and L. S. Levitt, "Chem. *and Ind. 990* (1970); J. Phys. Chem. 74, 1812 (1970); *Tetrahedron* 27, 277 (1971); "Experientin 26, 1183 (1970): 'J. Org. *Chem.* 37. 332 (1972); *"Israel 1.* Chem. 9.71 I (1971); *'Tetrahedron* 29,941 (1973); 'Chem. *and Ind.,* 724 (1972): 'Ibid. 185 (1973); "J. *Co&d. Chem.* (in press); *'Israel J.* Chem. 9, 71 (1971)
- 'L. S. Levitt, H. F. Widing and B. W. Levitt, Can. J. *Chem.* (in press)
- ⁶B. W. Levitt, H. F. Widing and L. S. Levitt, Chem. *and* Ind. 793 (1973)
- $'L$. S. Levitt and B. W. Levitt, Ibid. 132 (1973); L. S. Levitt and C. Párkányi, *Int. J. Sulf. Chem.*, *(in press)*
- "L. S. Levitt, B. W. Levitt and C. Párkányi, Tetrahedron 28, 3369 (1972)
- 'L. S. Levitt, Chem. *and* Ind. 637 (1973)
- '"r. Koopmans, *Physica I,* 104 (1933); R. S. Mulliken, 1. Chem. Phys. 3, 564 (1935) and Phys. *Rev.* 74, 736 (1948); J. C. Lorquet, *Reo. Mod.* Phys. 32. 312 (l%o)
- "K. Watanabe, T. Nakayama and J. Mottl, J. *Quant.* Spectrosc. Rad. Transf. 2, 369 (1962)
- "L. S. Levitt, *Can. I.* Chem. 31, 915 (1953); L. S. Levitt and E. R. Malinowski, J. Am. Chem. Soc. 77, 4517 (1955); Ibid. 80, 5334 (1958); L. S. Levitt and J. R. Pytcher, *Abst. papers, Nat'1 Meeting, Amer. Chem. Sot., Phys. Chem. Div. N. Y., 1972*
- "F. I. Vilesov, Sou. *Phys. Uspekhi 6, 890* (1964)
- "W. C. Herndon, *Progr.* Phys. Org. Chem. 9, 99 (1972)
- ¹'G. G. Hall, Trans. Far. Soc. 50, 319 (1954)
- 16K. Fukui, H. Kato, T. Yonezawa, *Bull. Chem. Sot. Jap. 33,* 1197 (1960)