ALKYL INDUCTIVE EFFECTS ON MOLECULAR IONIZATION POTENTIALS—XV

n-ALKANES

H. F. WIDING and L. S. LEVITT*

Chemistry Department, College of Science, University of Texas at El Paso, El Paso, Texas

(Received in the USA 17 April 1973; Received in the UK for publication 20 August 1973)

Abstract—The first ionisation potentials. E_1 , of n-alkanes are found to be a linear function of the inductive substituent constants, $\Sigma \sigma_1$. The correlation is obtained by considering that a σ -bonding electron is ejected from the most central C—C bond in the alkane R—R'. The equation for the regression is $E_1 = 17 \cdot 19 + 60 \cdot 2 \Sigma \sigma_1 \pm 0.04 \text{ eV}$, with correlation coefficient 0.998. An equation is also deduced relating E_1 to the number of carbon atoms, n_c , and hydrogen atoms, n_H , in the n-alkane: $E_1 = 4 \cdot 70(n_H - 1)/n_c$, from which E_1 for polymethylene, (CH₂)_x, is found to be 9.40 eV.

In this paper it will be demonstrated that the adiabatic ionization energies, E_1 , of n-alkanes are linear functions of Taft's inductive substituent constants, σ_1 .¹

It has already been shown that the ionization potentials of alkyl free radicals,² R·, are linear in $\sigma^{*,3}$ and that the E₁'s of alcohols,⁴ ethers,⁴ thiols,⁴ thioethers,⁴⁴ alkyl halides,⁴⁴ ethers,⁴⁴ trobaylic acids,⁴⁴ copper acetylacetonates,^{4h} amines,⁴ⁱ esters,³ nitriles,⁶ nitroalkanes,⁶ disulfides,⁷ alkenes,⁸ and alkynes,⁹ are all linear with respect to both σ_1 and σ^* . Thus one is able to compute, with a high degree of precision, the ionization potentials of compounds which yield a low abundance of the primary cation radical, or are difficult to obtain in a pure state, or vaporize only with decomposition.

The first adiabatic ionization energy of alkanes corresponds to the ejection of an electron from the highest occupied MO,¹⁰ which is assumed, with the exception of methane, to be a σ bonding orbital mainly associated with C--C, rather than C--H, the C-C bond being weaker than the C-H bond (82 and 100 kcal/mol, respectively). In order to compute the proper $\Sigma \sigma_{i}$, we assume that the ejected electron is from that C-C bond which has the highest electron density, due to interelectron repulsion. Electron release by alkyl groups is in accordance with their usual inductive order (Me < Et < n-Pr.) etc.) and is, of course, reflected in the σ_1 and σ^* constants. For a n-alkane this is tantamount to saying that the electron is lost from the most central C-C bond in the molecule. For n-butane, for example, $\Sigma \sigma_1$ will be calculated for two ethyls, not a methyl and n-propyl. Only in this way is the correlation obtained.

We can write, therefore, the following representation of the gas-phase expulsion of a σ -bonding electron from a C—C bond:

$$R \odot R' \xrightarrow{E_1} R \odot R' + e^{-1}$$

where R and R' cannot differ by more than one carbon (when n is odd in C_nH_{2n+2}).

Unlike the correlations given in previous papers in this series,⁴⁻⁹ we are not able to include the simplest of the n-alkanes, methane, due to the absence of a C—C bond; and in this respect it is not surprising that the E_1 value for CH₄ (13 eV) falls far from the regression line. Furthermore, in this series of compounds, there is no functional group in the accepted sense.

Table 1 lists the available experimentally¹¹ obtained photoionization (PI) potentials for the nalkanes, along with the corresponding $\Sigma \sigma_1$ values for the alkyl groups, computed as explained above.

The experimental E_i values are plotted vs $\Sigma \sigma_i$ in

Table 1. Experimental and calculated E₁ values

			Calculated E ₁ (eV)		
Cmpd	$\Sigma \sigma_{i}{}^{a}$	$E_1 (eV)$ (Expt'l) [*]	(Eq (2))	(Eq (5))	(Eq (7))
C ₂ H ₆	-0.092	11.65	11.65	11.78	11.75
C ₃ H ₈	-0.101	11.07	11.10	10·98	10·97
C ₄ H ₁₀	-0.110	10.63	10.56	10.59	10.58
C ₃ H ₁₂	-0.113	10.35	10.38	10.35	10.34
C ₆ H ₁₄	-0.116	10.18	10.20	10.19	10.18
C ₇ H ₁₆	-0·118'	10.08	10.08	10.08	10.07
C _B H ₁₈	-0.120°	_⁴	9.95	9.99	9.98
C ₉ H ₂₀	_'	ª		9.93	9.92
C ₁₀ H ₂₂	_'	ď		9.88	9.87
(CH ₂) _x	—	_4		9.40	9-40

"From Ref 1.

*From Ref 11.

'n-Bu value from Ref 4a.

^dExperimental PI or PES value not available.

"The σ_1 for n-Am is not known.

Fig 1, where it is immediately evident that an excellent correlation exists (r = 0.998; standard error = 0.04 eV).

The equation for the regression line is given by

$$\mathbf{E}_{\mathbf{R}-\mathbf{R}} = \mathbf{E}_0 + \mathbf{a}_1 \boldsymbol{\Sigma} \boldsymbol{\sigma}_1. \tag{1}$$

The intercept (E_v) and slope (a_t) are found to be 17.19 eV and 60.2 eV, respectively, and therefore we have:

$$E_{R-R} = 17.19 + 60.2 \Sigma \sigma_1 \pm 0.04 \text{ eV}.$$
 (2)

In the fourth column of the Table, the E_1 values calculated using Eq (2), are presented, and the agreement with the experimental values is seen to be excellent. The E_1 's are also computed for noctane, n-nonane, and n-decane, compounds for which there are as yet no experimental PI, PES, or spectroscopic values available.

The slope, a_i , in eV units, is analogous to the dimensionless reaction constant ρ_i , and is a measure of the sensitivity of the ionization site to alkyl inductive effects. The very large a_i value of 60.2 obtained here for n-alkanes should be compared with the slopes observed for alkyl free radicals³ (15.2)*, alkenes⁸ (11.6), alkynes⁹ (23.2), ethers⁴ (28.0), and ketones⁴ (14.0). For alkenes and alkynes a bonding

*Value obtained by our plot of E_i against σ_i (unpublished work).

 π -electron is lost. Comparing the n-alkanes with the ethers and ketones, it is seen that the a_1 's vary tremendously in the order $R_2CO \ll R_-R$, and this can be rationalized in the following way: in R_2CO the ionization site is the oxygen lone pair and the alkyl inductive effect must be transmitted through the carbonyl carbon and the C=O double bond; in R_2O the electron is lost again from an oxygen non-bonding lone pair, but the R groups are in close proximity; In R:R the alkyl groups are at the very site of ionization and thus are able to exert the strongest inductive effect.

It is seen from the experimental E_1 data in the Table that there is a regular but gradual attenuation of the diminishing effect of increased chain length on the ionization potentials. This is shown more clearly in Fig 2 where E_1 is plotted against the number of C atoms, n. This curve is, apparently, a rectangular hyperbola, and can be represented¹² by Eq (3):

$$\mathbf{E}_{\mathrm{I}} = \mathbf{E}_{\mathrm{(min)}} \left(\frac{\mathbf{n} + \mathbf{b}}{\mathbf{n}} \right), \tag{3}$$

where $E_{(mun)}$ is the theoretical E_1 value for a straight chain saturated hydrocarbon of infinite length, i.e., for polymethylene; and b is an empirical constant to be evaluated. In order to determine the numerical values of $E_{(mun)}$ and b, Eq (3) can be rearranged to give Eq (4)

$$\mathbf{n}\mathbf{E}_{I} = \mathbf{n}\mathbf{E}_{(\min)} + \mathbf{b}\mathbf{E}_{(\max)} \tag{4}$$

which is the equation for a straight line (Fig 3) in a plot of $nE_1 vs n$, with intercept $bE_{(mun)}$ and slope $E_{(min)}$. The slope is found to be 9.40 eV and the intercept is 4.75 eV, from which b = int./slope =

Fig 2. A plot of E_t of C_nH_{2n+2} vs n.

Fig 3. A plot of nE_1 of C_nH_{2n+2} vs n.

0.505. Substituting these values into Eq (4), we have

$$nE_1 = 4.75 + 9.40 n \pm 0.05 eV.$$
 (5)

With good approximation, $b = \frac{1}{2}$, and therefore Eq (3) can be rewritten as

$$\mathbf{E}_{i} = 9 \cdot 40 \left(\frac{\mathbf{n} + \frac{1}{2}}{\mathbf{n}} \right), \tag{6}$$

which can be rearranged to give

$$E_{1} = 4.70 \left(\frac{2n+1}{n}\right) = 4.70 \left(\frac{n_{H}-1}{n_{C}}\right)$$
$$= 4.70(2) \text{ for } 2n \ge 1, \qquad (7)$$

 $*E_1 = 9.06 + \frac{A}{n_c} - \frac{B}{n_c^2}$

⁺Calculations based on vertical electron impact E_1 's which generally run 0.5 to 1.0 eV higher than those obtained by PI, PES, or spectroscopy.

where n and n_c = number of C atoms and n_H the number of H atoms in the alkane C_nH_{2n+2} ($n \neq 1$). This single parameter equation can be compared to the three parameter equation* of Vilesov¹³ who has estimated $E_{(mun)}$ (for (CH₂)_x) to be 9.06 eV, whereas Herndon,¹⁴ Hall,¹⁵ and Fukui, *et al.*,¹⁶ using various semi-empirical MO methods, have all estimated $E_{(mun)}$ at about 10.0.[†]

REFERENCES

- ¹R. W. Taft and I. C. Lewis, *Tetrahedron* 5, 210 (1959) ²A. Streitwieser, *Prog. Phys. Org. Chem.* 1, 1 (1963)
- ³R. W. Taft in Steric Effects in Organic Chemistry (M. S. Newman, Ed.), Wiley, N. Y. 1956, p. 619
- 'B. W. Levitt and L. S. Levitt, "Chem. and Ind. 990 (1970); J. Phys. Chem. 74, 1812 (1970); Tetrahedron 27, 277 (1971); "Experientia 26, 1183 (1970); 'J. Org. Chem. 37, 332 (1972); "Israel J. Chem. 9, 711 (1971); "Tetrahedron 29, 941 (1973); 'Chem. and Ind., 724 (1972); "Ibid. 185 (1973); 'J. Coörd. Chem. (in press); 'Israel J. Chem. 9, 71 (1971)
- ⁵L. S. Levitt, H. F. Widing and B. W. Levitt, *Can. J. Chem.* (in press)
- ⁶B. W. Levitt, H. F. Widing and L. S. Levitt, *Chem.* and Ind. 793 (1973)
- ⁷L. S. Levitt and B. W. Levitt, *Ibid.* 132 (1973); L. S. Levitt and C. Párkányi, *Int. J. Sulf. Chem.*, (in press)
- ^aL. S. Levitt, B. W. Levitt and C. Párkányi, Tetrahedron 28, 3369 (1972)
- ^oL. S. Levitt, Chem. and Ind. 637 (1973)
- ¹⁰T. Koopmans, *Physica* 1, 104 (1933); R. S. Mulliken, *J. Chem. Phys.* 3, 564 (1935) and *Phys. Rev.* 74, 736 (1948); J. C. Lorquet, *Rev. Mod. Phys.* 32, 312 (1960)
- ¹¹K. Watanabe, T. Nakayama and J. Mottl, J. Quant. Spectrosc. Rad. Transf. 2, 369 (1962)
- ¹²L. S. Levitt, Can. J. Chem. 31, 915 (1953); L. S. Levitt and E. R. Malinowski, J. Am. Chem. Soc. 77, 4517 (1955); Ibid. 80, 5334 (1958); L. S. Levitt and J. R. Pytcher, Abst. papers, Nat'l Meeting, Amer. Chem. Soc., Phys. Chem. Div. N.Y., 1972
- ¹³F. I. Vilesov, Sov. Phys. Uspekhi 6, 890 (1964)
- ¹⁴W. C. Herndon, Progr. Phys. Org. Chem. 9, 99 (1972)
- ¹⁵G. G. Hall, Trans. Far. Soc. 50, 319 (1954)
- ¹⁶K. Fukui, H. Kato, T. Yonezawa, Bull. Chem. Soc. Jap. 33, 1197 (1960)